The Euclidean Symmetric Isosceles Queasy Four-Point Properties
نویسندگان
چکیده
منابع مشابه
On Isosceles Sets in the 4-Dimensional Euclidean Space
A subset X in the k-dimensional Euclidean space R that contains n points (elements) is called an n-point isosceles set if every triplet of points selected from them forms an isosceles triangle. In this paper, we show that there exist exactly two 11-point isosceles sets up to isomorphism and that the maximum cardinality of isosceles sets in R is 11 .
متن کاملطراحی و ساخت دستگاه four-point probe station
یکی از ویژگی های اساسی مواد هادی مقاومت الکتریکی آن هاست که با داشتن تعداد الکترونهای آزاد لایه ظرفیت می توان مقاومت الکتریکی آن ماده را پیدا نمود. با اندازه گیری مقاومت الکتریکی مواد می توان ویژگیها و مشخصات ماده را تعیین نمود. در این پایان نامه بنا داریم به اندازه گیری مقاومت الکتریکی با استفاده چهار پراب همراستا با فاصله ثابت از هم که در تماس با سطح یک ویفر سیلیکونی هستند اقدام کنیم. در عم...
Isosceles Sets
In 1946, Paul Erdős posed a problem of determining the largest possible cardinality of an isosceles set, i.e., a set of points in plane or in space, any three of which form an isosceles triangle. Such a question can be asked for any metric space, and an upper bound ( n+2 2 ) for the Euclidean space E was found by Blokhuis [3]. This upper bound is known to be sharp for n = 1, 2, 6, and 8. We wil...
متن کاملThe Symmetric Positive Solutions of Four-Point Problems for Nonlinear Boundary Value Second-Order Differential Equations
Recently, there are many results about the existence and multiplicity of positive solutions for nonlinear second-order differential equations(see[7],[5],[3]). Henderson and Thompson(see[4]), Li and Zhang (see[2]) studied the multiple symmetric positive and nonnegative solutions of second-order ordinary differential equations. Yao (see[6]) considered the existence and iteration of n symmetric po...
متن کاملCommutative curvature operators over four-dimensional generalized symmetric spaces
Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.2307/2037936